CHAPTER RESOURCES

Chapter 5 Combining Atoms and Molecules

Includes:

LEVELED ASSESSMENT

Chapter Review Chapter Tests Test A (Below Level) BL Test B (On Level) OL Test C (Advanced Learner) AL

LABS

For leveled labs, use the LabManager CD-ROM. Lab worksheets from Student Edition Labs MiniLab Lab: Version A (Below Level) BL Lab: Version B (On Level) OL (Advanced Learner) AL

UNIVERSAL ACCESS/LEVELED RESOURCES

Target Your Reading Chapter Content Mastery English (Below Level) BL

Chapter Content Mastery Spanish (Below Level)

Reinforcement (On Level) OL

Enrichment (Advanced Learner)

READING SUPPORT

Content Vocabulary Chapter Outline

TEACHER SUPPORT AND PLANNING

Chapter Outline for Teaching Teacher Guide and Answers

Photo Credits

Cover: Roger Ressmeyer/CORBIS

The **McGraw·Hill** Companies

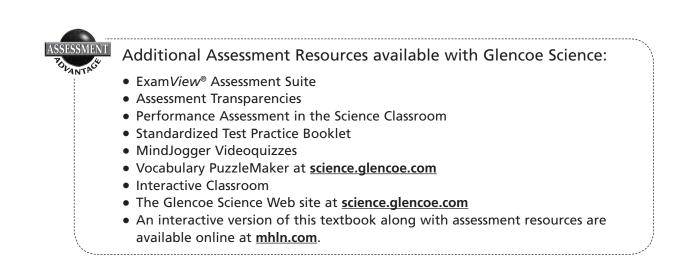
Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Permission is granted to reproduce the material contained herein on the condition that such material be reproduced only for classroom use; be provided to students, teachers, and families without charge; and be used solely in conjunction with the *Glencoe Science* program. Any other reproduction, for use or sale, is prohibited without prior written permission of the publisher.

Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240-4027

ISBN-13: 978-0-07-875461-6 ISBN-10: 0-07-875461-5

Printed in the United States of America.

 $2\;3\;4\;5\;6\;7\;8\;9\;10\;\;009\;\;11\;10\;09\;08\;07\;06$


Table of Contents

To the Teacher	.iv
Reproducible Student Pages	
Hands-On ActivitiesMiniLab: How can you model molecules?Lab Version A: Growing CrystalsLab Version B: Growing Crystals	. 3
Meeting Individual Needs Below, On, Advanced	
Target Your Reading	10
Chapter Content Mastery	. 11
Spanish Chapter Content Mastery	. 13
Reinforcement	. 15
Enrichment	. 17
Content Vocabulary	. 19
Chapter Outline Worksheets	. 32
Assessment	
Chapter Review	. 21
	23

Chapter Test A	. 23
Chapter Test B	. 26
Chapter Test C	. 29

Teacher Support and Planning

Chapter Outline for Teaching	-	T2
Teacher Guide and Answers		T5

Teacher Approval Initials
Date of Approval

Student Lab/Activity Safety Form

Student Name: _____

Date: _____

Lab/Activity Title: _____

In order to show your teacher that you understand the safety concerns of this lab/activity, the following questions must be answered after the teacher explains the information to you. You must have your teacher initial this form before you can proceed with the activity/lab.

1. How would you describe what you will be doing during this lab/activity?

MiniLab How can you model molecules?

Many atoms bond to one, two, three, or four other atoms. Use your hands and feet as bonds to act like an atom.

Procedure 조 🐨 🖙

Data and Observations

- 1. Read and complete a lab safety form.
- **2.** Clear a space in which to move around. Make sure there are no objects anyone can trip over or bump into.
- **3.** In your Science Journal, create a chart in which to draw Lewis dot diagrams for the first 18 elements. Determine the number of bonds each atom can form.
- 4. Sort the first 18 elements into a Venn diagram similar to the one in your textbook. Write elements that do not form compounds below the diagram.
- **5.** Make a chart like the one shown below in your Science Journal that lists the elements that form one, two, three, four, and zero bonds.
- **6.** Brainstorm how to model covalent bonds and ionic bonds. Choose the best way to model both types of bonds.
- **7.** Choose one element. As an atom of that element, form bonds with students representing other atoms.

Elements that Form	Elements that Form	Elements that Form	Elements that Form
One Bond	Two Bonds	Three Bonds	Four Bonds

Analysis

- 1. Describe how the ionic bonds behaved differently from the covalent bonds.
- 2. Describe any problems you had with this modeling activity.

b Growing Crystals

Problem Crystals of ionic compounds can be made to grow from supersaturated solutions.

Form a Hypothesis Read the procedure. What conditions do you think will produce the best crystals? Write a hypothesis to explain your prediction.

Materials

alum	
distilled water	
salt	
sugar	
filter paper	

string hot plate beaker spatula hand lens

Safety Precautions 📼 🍄 🛞 🔎 🌌 🖉

Procedure

Directions: Check the boxes below as you complete each step of the procedure.

- \Box **1**. Read and complete a lab safety form.
- 2. Thoroughly clean and rinse all equipment with distilled water before starting. Impurities from dirty equipment might prevent the crystals from growing.
- □ **3.** Create your framework.
 - □ Cut a 7 cm length of string. Tie the string to the middle of a pencil.
 - □ This will be the framework for growing crystals. Make sure the framework is very clean.
 - □ Do not use metal, which could react with the crystal compound.
 - Once you have made your solution, you may want to put a seed crystal, a small crystal of the same chemical, on the string.
 - □ Dangle the framework into the supersaturated solution.
- □ **4**. A supersaturated solution can be made by stirring as much solute, or dissolving substance, as possible into boiling water.

- \Box Measure 100 mL of water. Boil the water.
- □ Choose a solute from the list. Add the solute to the water one spoonful at a time until it no longer dissolves.
- □ When undissolved solute settles on the bottom, your solution is supersaturated. Carefully pour your solution into a clean beaker.
- □ 5. When growing crystals, it is best to leave them undisturbed in an area with no vibrations.
 - □ Cover the beaker with a filter to protect the growing crystals from dust.
 - □ You may choose to grow your crystals at room temperature or in a refrigerator or freezer.
- □ 6. Leave your crystal setup for several hours or overnight.
 - □ When you return to the lab, make a drawing of your crystals and those of other lab groups.

CHAPTER 5 VERSION A

Date

Class

Lab: Version A CONTINUED

Analyze and Conclude

- **1. Identify** the compound that grew the best crystals.
- **2**. **Describe** which condition grew the best crystals.

3. Describe your experiment and those of your classmates. Make note of the similarities and differences in procedures and results. Explain how you think that each of the changes in procedure affected the product.

4. Infer Do you think there is a difference in the way crystals in the sugar (molecular compound) and the salts (ionic compounds) grew? Explain, using your observations.

5. Draw a diagram on how you think the crystals grow on a molecular level.

Lab: Version A CONTINUED

6. Describe the errors that were made. How could the procedures have been improved?

Communicate

Write a procedure for growing crystals of rock candy at home. Imagine that your procedure would be part of a book of fun experiments to be done in the kitchen.

Lab Growing Crystals

CHAPTER 5 VERSION B

Problem Crystals of ionic compounds can be made to grow from supersaturated solutions.

Form a Hypothesis Read the procedure. What conditions do you think will produce the best crystals? Write a hypothesis to explain your prediction.

alum	string
distilled water	hot plate
salt	beaker
sugar	spatula
filter paper	hand lens

Safety Precautions 🐼 🍄 🔞 🖍 🐼

Procedure

Directions: Check the boxes below as you complete each step of the procedure.

- □ **1**. Read and complete a lab safety form.
- 2. Thoroughly clean and rinse all equipment with distilled water before starting. Impurities from dirty equipment might prevent the crystals from growing.
- □ 3. Use a pencil with a 7-cm string attached as the framework for growing crystals. Dangle the framework into the supersaturated solution. You may want to put a seed crystal, a small crystal of the same chemical, on the string. Make sure that you do not use metal, which could react with the crystal compound. Make sure the framework is very clean.
- □ **4.** A supersaturated solution can be made by stirring as much solute, or dissolving

Analyze and Conclude

1. Identify the compound that grew the best crystals.

substance, as possible into boiling water. Add solute spoonful by spoonful to 100 mL of boiling water until it no longer dissolves. If undissolved solute settles on the bottom, carefully pour your solution into a clean beaker.

- □ 5. When growing crystals, it is best to leave them undisturbed in an area with no vibrations. Cover the beaker to protect the growing crystals from dust. You may choose to grow your crystals at room temperature or in a refrigerator or freezer.
- □ 6. Leave your crystal setup for several hours or overnight. When you return to the lab, record observations about your own crystals and those of other lab groups.

2. **Describe** which condition grew the best crystals.

7

Lab: Version B CONTINUED

3. Describe your experiment and those of your classmates. Make note of the similarities and differences in procedures and results. Explain how you think that each of the changes in procedure affected the product.

4. Infer Do you think there is a difference in the way crystals in the sugar (molecular compound) and the salts (ionic compounds) grew? Explain, using your observations.

5. Draw a diagram on how you think the crystals grow on a molecular level.

6. Describe the errors that were made. How could the procedures have been improved?

Lab: Version B CONTINUED

Going Further

Challenge

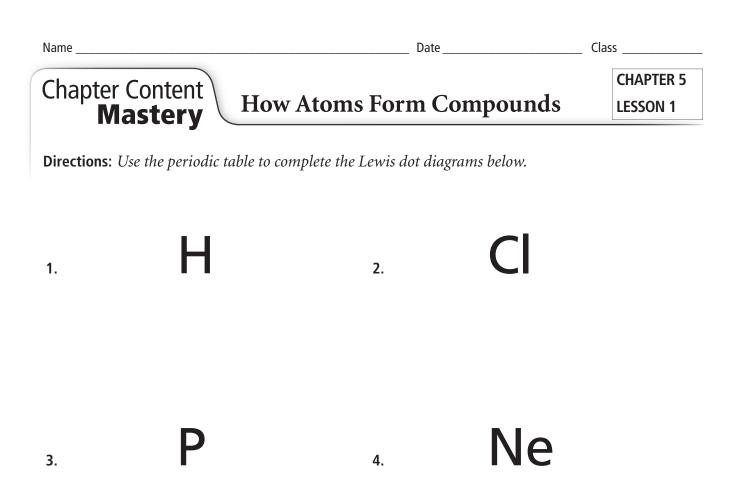
- 7. Elena went on a cave tour where she observed stalactites growing from the ceiling of the cave. The tour guide told Elena the stalactites formed when lime dissolved out of the ground and mixed with rain water. The rain water seeped through the cave wall and dripped from the ceiling. **Compare** the growth of stalactites to the growth of crystals in your class.
- 8. Imagine one of your classmates tried to grow crystals at home. However, he only mixed the alum and water together, rather than making a supersaturated solution. Predict the results.
- 9. Did you choose to use a seed crystal to help grow your crystals? **Consider** the role a seed crystal played or did not play in your crystal growth.
- **10.** Will wants to test to see if crystal growth will be better on a smooth surface or a rough surface. He is pouring a supersaturated solution onto a glass pie plate. In another glass pie plate, he has placed a sponge and poured an equal amount of supersaturated solution. Predict which surface will promote the growth of the crystals. Think about where crystals grew in your tube.

Extension

Did anyone in your class choose to place his or her solution in the refrigerator? How do you think this influenced the growth of the crystals? Design an experiment to test the growth of crystals in the refrigerator. Do you think the temperature will affect the growth? What will your independent variables be? What will your control variables be? Conduct your investigation, and share your crystals with your class.

Communicate

Write a procedure for growing crystals of rock candy at home. Imagine that your procedure would be part of a book of fun experiments to be done in the kitchen.


Target Your **Reading**

Combining Atoms and Molecules

Use this to focus on the main ideas as you read the chapter.

- **1. Before you read** the chapter, respond to the statements below on your worksheet or on a numbered sheet of paper.
 - Write an **A** if you **agree** with the statement.
 - Write a **D** if you **disagree** with the statement.
- **2. After you read** the chapter, look back to this page to see if you've changed your mind about any of the statements.
 - If any of your answers changed, explain why.
 - Change any false statements into true statements.
 - Use your revised statements as a study guide.

Before You Read A or D	Statement	After You Read A or D
	1 . Compounds have properties very similar to the properties of the elements they contain.	
	2. A compound always has the same formula showing the same elements in the same ratios.	
	3 . All elements can form both covalent and ionic bonds.	
	4. An atom that transfers an electron becomes a negative ion.	
	5. Covalent bonds can be single, double, or triple.	
	6 . Some of the electrons in metals are free to move from atom to atom.	
	7. All crystals are held together with ionic bonds.	
	8. In a sodium chloride crystal, sodium ions surround chloride ions.	
	9. A polymer is a stringlike compound made of repeating unit cells.	

Directions: Answer each question about elements, compounds, and the periodic table.

5. Does neon combine easily with other elements? Explain your answer.

- **6.** Nitrogen has the same number of electrons in its outer energy level as which element above (from questions 1–4)?
- 7. What specific name is given to a chemical bond in which atoms share electrons?
- 8. Which elements have properties similar to calcium?

Name	Date	Class
		CHAPTER 5

Chapter Content Mastery Forming Solids

Directions: *Circle the two terms in each group that are related. Then explain how the terms are related.*1. copper, iron, table salt

- 2. diamond, oil, table salt
- 3. mixture, monomer, polymer
- 4. ductility, malleability, viscosity

Directions: Circle the term that correctly completes each sentence.

- **5.** A crystal is made up of a repeating pattern of (unit cells/atoms).
- **6.** One property of metals, (malleability/ductility), is the ability of a metal to be hammered or rolled into sheets.
- 7. Ethene is one example of a (polymer/monomer).
- **8**. If a polymer is made up of molecules containing (oxygen/carbon), it is called an organic polymer.
- 9. In metals, (protons/electrons) are free to move between atoms throughout the piece of metal.
- **10.** The arrangement of unit cells in a crystal is most like the arrangement of stamps in a (book/roll).
- **11**. (Quartz/Polystyrene) is one example of a crystal.
- 12. Copper is often used for telephone wiring because it is (ductile/malleable).

Dominio del

contenido

Clase

Lección 1

Instrucciones: Usa la tabla periódica para completar los diagramas.

Instrucciones: *Contesta las siguientes preguntas acerca de los elementos, los compuestos y la tabla periódica.*

5. ¿Se combina el neón fácilmente con otros elementos? Explica tu respuesta.

6. ¿El nitrógeno tiene el mismo número de electrones en su nivel exterior de energía comparadocon cuál elemento de los de arriba (de las preguntas 1–4)?

7. ¿Qué nombre especifico se da a una unión química en cual los átomos comparten electrones?

8. ¿Cuáles elementos tienen propiedades similares al calcio?

Nombre	Fecha	Clase
Dominio del		CAPÍTULO 5

Formando sólidos

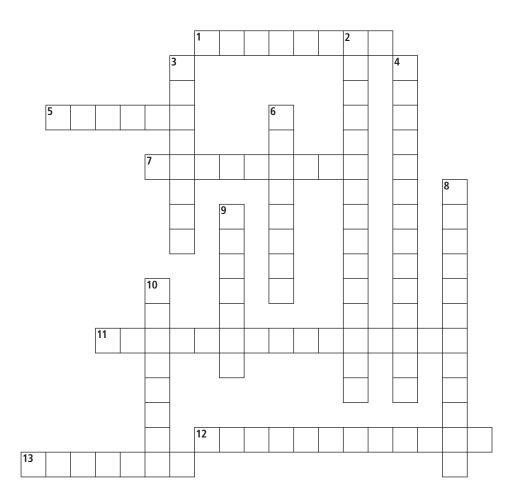
Instrucciones: Circula los dos términos en cada grupo que están relacionados. Entonces explica por qué están relacionados.

1: cobre, hierro, sal de mesa

contenido

2: sal de mesa, aceite, diamante

3: mezcla, monómero, polímero


4: viscosidad, ductilidad, maleabilidad

Instrucciones: Circula el término que correctamente completa la oración.

- 5. Un cristal es hecho de un patrón repitiendo de (unidades de células/átomos).
- **6.** Una propiedad de los metales, (maleabilidad/ductilidad), es la característica de un metal que se puede martillar o laminar en láminas.
- 7. Etileno es un ejemplo de un (polímero/monómero).
- 8. Si un polímero es hecho de moléculas que contienen (oxígeno/carbono), se llama un polímero orgánico.
- **9.** En los metales, los (protones/electrones) están libres para moverse entre los átomos en el pedazo de metal.
- El arreglo de células unitarias en un cristal es como el arreglo de estampillas en un(a) (libro/rollo).
- **11.** El (cuarzo/poliestireno) es un ejemplo de un cristal.
- 12. El cobre se usa frecuentemente para alambras de teléfonos porque es (dúctil/maleable).

Reinforcement How Atoms Form Compounds

Directions: *Complete the crossword puzzle using the clues below.*

Across

- 1. a neutral particle that forms as a result of electron sharing
- 5. the lightest noble gas
- **7.** an electrical attraction between positively and negatively charged ions in an ionic compound
- **11.** a notation using atomic symbols and subscripts to show the elements and the number of atoms of each element in a compound
- **12.** a chemical bond formed when atoms share electrons
- **13.** a pure substance made of only one kind of atom

Down

- 2. a diagram that represents an atom and its electrons
- **3**. a pure substance that contains two or more elements
- 4. an ionic compound that consists of only two different ions
- 6. a gas in the rightmost column of the periodic table with a full outer energy level
- 8. a force that holds atoms together to form a compound
- 9. the number of electrons in the outermost energy level of an atom
- 10. negatively charged particle that is one of the three basic building blocks of atoms

Name	Date	Class
		CHAPTER 5
<i>Reinforcement</i> \	Forming Solids	LESSON 2

Directions: *In the space provided, write all terms from the list below that describe each substance named.*

() ()	valent bond	crystal	ductile	element	ionic bond
	alleable	metal	metallic bond	polymer	
1.	gold				
2.	polystyrene				
3.	table salt				
4.	steel				
5.	diamond				
Dir	ections: Write the mis	sing word in ea	ach statement to describe d	lifferent types of solid	ls.
6.	A regular, repeating	arrangement o	of atoms, ions, or molecul	es is a	
7.	Metal atoms combin move from atom to a		atterns in which		are free to
8.	Monomers called an	nino acids mak	ke up proteins, one type c	of	
	organic				
9.	Organic polymers, s	uch as the carb	oohydrates used in our bo	odies, always contair	n the
	element				
10.	A molecules are arrang	is t ged in a crystal	he smallest repeating pat	tern that shows how	atoms, ions, or

Enrichment Phlogiston or Oxygen?

Before the oxygen theory of burning and rusting was developed, most scientists believed in the phlogiston (floh JIHS tuhn) theory. These two theories are described briefly below.

Phlogiston Theory—Wood is made of ash and a substance called phlogiston. When wood burns, it gives off phlogiston in the air, leaving the ash. Iron is made up of metallic ash (now called iron oxide) and phlogiston. When iron rusts, it releases phlogiston into the air, leaving the metallic ash.

Oxygen Theory—When wood burns, it combines with the oxygen in the air to form new substances—carbon dioxide, water, and ash. When iron rusts, it combines with the oxygen in the air to form a new substance iron oxide. In both cases, the total mass of the original substance and the oxygen with which it combines equals the total mass of the resulting substances.

Directions: *Respond to each statement using complete sentences.*

- 1. Scientists tested the phlogiston and oxygen theories by burning wood in a closed container filled with either pure nitrogen or pure oxygen instead of air. (Air consists of 78% nitrogen, 21% oxygen, and 1% other gases.) The wood did not burn in nitrogen, but it burned vigorously in oxygen. Formulate an argument supporting one of these theories based on these observations.
- **2**. When in this evidence
 - **2.** When iron rusts, the resulting substance has a greater mass than the original iron. **Incorporate** this evidence into the argument you made above.

CHAPTER 5

LESSON 2

Enrichment \setminus

Carbon Crystals

Carbon, the central element for life on Earth, is remarkable for many reasons. Because it has four unpaired electrons in its valence layer of electrons, carbon can form up to four different covalent bonds. This allows it to form a wide variety of different compounds with other atoms and molecules.

The Basis of Life

As the basis of most biological molecules, carbon forms many compounds called organic compounds. The word *organic* comes from a Latin root word meaning "life." All life scientists have discovered on Earth relies on carbon-based molecules.

Polymer Molecules

If carbon atoms have attached hydroxyl (OH⁻) groups when they form a polymer molecule,

that molecule will be a lipid—an oil or a fat. However, if the carbon atoms have bonded nitrogen atoms when they form a polymer, they form proteins instead of lipids. The building blocks of proteins, called amino acids, combine in a nearly infinite number of ways to form genes, chromosomes, and DNA. Together, these organic polymers combine the information that controls what we look like and how our bodies work.

Carbon Changing Form

Carbon even has interesting properties on its own. If it changes into a crystal form under high temperature and pressure, diamonds, a particularly rare formation of carbon crystal, are formed. If it crystallizes in other conditions, other crystal structures, such as graphite, can form.

Directions: Respond to each question or statement using complete sentences.

1. You have used graphite many times in the form of pencil lead. **Compare** the properties of carbon in the form of graphite to the properties of carbon in diamond form, and point out the properties that make graphite useful for writing.

2. If silicon-based life is eventually discovered, should silicon-based molecules that help support life be called organic molecules? **Propose** a name for such molecules.

Content Vocabulary

_____ Date ___

CHAPTER 5

Combining Atoms and Molecules

Directions: *Match each term with its definition by writing the correct letter in the blank.*

1	I. the ability of a substance to be pulled into wires	A. atom
-		B . chemical bond
2	 an electrical attraction between positively and negatively charged ions in an ionic compound 	C . chemical formula
3	B. a negatively charged particle that is one of three building blocks for atoms	D. compound
	C C	E. ductility
4	a pure substance made of only one type of atom	F. electron
5	i. the smallest unit of an element that retains all	G.element
	the properties of that element	H. ionic bond
6	a pure substance that contains two or more elements	I. molecule
7	. a force that holds atoms together in a	J. monomer
	compound	K. polymer
8	3. a covalent compound made up of many small, repeating units linked together in a chain	L. valence
g). a small molecule that forms a link in a polymer chain	
10). the number of electrons in the outermost energy level of an atom	
11	a neutral particle that forms as a result of electron sharing	
12	2. a method for representing a compound with atomic symbols and subscripts that shows the elements and the number of atoms of each element that combine to form the compound	

Name Content Vocabulary continued		Date	Class
			CHAPTER 5
Directions : Complete e	ach sentence by writing the	correct term on each lit	1e.
binary	carbohydrate	covalent	crystal
ion	Lewis dot diagram	malleability	metallic bond
noble gas	organic polymer	proteins	unit cell
13. Anything that con	sists of two parts can be ca	lled	
14. A drawing called a symbol and the ele	(n) ectrons in the atom's outer	represents an a energy level with care	tom with its chemical fully arranged dots.
15	is the ability of a	a material to be hamn	nered or rolled into sheets.
16. A regular, repeatin	g arrangement of atoms, ic	ons, or molecules is ca	lled
a(n)			
17. A(n) carbon.	is a polym	er made up of monom	ers that contain the element
18. A	bond is forme	ed when atoms share e	lectrons.
19 . Natural organic po	olymers whose monomers a	re amino acids are	
20. A(n)	is a charge	d particle.	
21. A(n)	is an eleme nature in a gaseous state ar	ent from the right-han nd does not easily form	nd column of the periodic n chemical compounds with
22. A(n)electrons.	is formed v	when many metal aton	ns share their pooled
		w the atoms, ions, or 1	nolecules are arranged in a
crystal is a(n)			
24. A(n) molecules.	is a natura	l organic polymer who	ose monomers are sugar

Chapter Review	Combining Atoms and Molecules	CHAPTER 5
Part A. Vocabulary Rev	view	
Directions: <i>In the space pr</i>	ovided, write the term that fits the definition.	
	1. a force that holds atoms together in a compound	
	2 . a covalent compound made up of many small, repeating together in a chain	units linked
	3. the ability of a material to be hammered or rolled into sh	ieets
	4. the number of electrons in the outermost energy level of	an atom
	5. a pure substance that contains two or more elements	
	6. the ability of a substance to be pulled into wires	
	7. the smallest repeating pattern that shows how the atoms molecules are arranged in a crystal	, ions, or
	8. a type of chemical bond in which atoms share electrons	
	9. the smallest unit of an element that retains all the proper element	cties of that

Directions: *Identify the correct choice from the two options listed by circling the correct word or phrase.*

- **10.** In a(n) (metallic bond/ionic bond), many metal atoms share their pooled electrons.
- **11.** A (monomer/unit cell) is a small molecule that forms a link in a polymer chain.
- Positively and negatively charged ions in an ionic compound experience an electrical attraction called a(n) (covalent bond/ionic bond).
- **13**. A (Lewis dot diagram/chemical formula) uses atomic symbols and subscripts to show the elements and the number of atoms of each element that combine to form a compound.
- Snowflakes are one example of a (crystal/polymer), or a regular, repeating arrangement of atoms, ions, or molecules.

Chapter	Review	CONTINUED

Part B. Concept Review

Directions: On the line at the left, write T if the statement is true and F if it is false. For each false statement, write a new version that is true.

1. Metallic crystals tend to be more brittle that	n ionic crystals.
---	-------------------

- 2. Table salt is necessary for human life, even though it is made from a poisonous gas and an explosive solid.
- 3. A noble gas such as helium tends not to form compounds with other elements because its outer energy level is missing two electrons.

Directions: Answer each question or respond to each statement in complete sentences.

4. Differentiate How are covalent bonds different from ionic bonds?

5. Compare and Contrast Both crystals and polymers can be made of repeating patterns of molecules. How are these materials similar and different?

6. Recommend at least three uses for which metals are suited because they are ductile and malleable.

Chapter

Combining Atoms and Molecules

Lesson 1: How Atoms Form Compounds

Outline

A. What is a compound?

- **1.** A ______ is a pure substance that contains two or more elements.
- **2.** A(n) ______ is an ingredient list for a compound that uses atomic symbols and subscripts.
- **3.** A neutral particle that forms as a result of electron sharing is
 - a(n) .
- **4.** Compounds have properties that are different from the that compose them.
 - a. Table salt is formed when the elements ______ and

_____ combine.

b. An **ionic bond** is an electrical attraction between _____ and

charged ions in an ionic compound.

B. Ionic Bonds and Ionic Compounds

- **1.** An atom that is not neutral because it has gained or lost electrons is
 - a(n) _____.
- 2. The force that holds atoms together in a compound is called
 - a(n) _____.
- **3.** A(n) ______ is an electrical attraction between positively and negatively charged ions in an ionic compound.
- **4.** A(n) ______ compound is one in which two or more elements or compounds gain or lose electrons and form ionic bonds.
 - a. In an ionic compound, the ______ ion is usually a metal. The negative ion is a(n) ______.
 - **b**. If an ionic compound has only two different ions, it is called

a(n) ______.

Chapter Outline of	CONTINUED	
c . Metals like magnesiu	m and calcium from Group 2 of the periodic tabl	e can form binary
ionic compounds wit	h elements from either Group	or
Group		
d. Many ionic compour	nds dissolve in water. Water with dissolved ionic c	ompounds is a(n)
	of electricity.	
5electrons to help predic	are one method for using atomic symbols a at how compounds will form.	nd dots representing
6. The number of electron	ns in an atom's outermost energy level is	
its		
7. The noble gases, elemen valence electrons.	nts from of the period	odic table, have eight
8. Some atoms become ion	ns by gaining or losing electrons until they have the	he same filled
	energy levels as noble gases.	
. Covalent Bonds—Sharing	gElectrons	
1. A(n)	is a chemical bond formed when atom	ns share electrons.
2. All	are covalent compounds based on carbo	on atoms.
3	compounds can be solids, liquids, or gases	at room temperature.
4. Atoms that have electrons.	electrons can form compo	unds if they share
5. Carbon has bonds.	unpaired electrons, and can for	rm four covalent
6. A(n)two atoms. Double bon	consists of two pairs of electrons share ds are stronger than single bonds.	ed between the same
7electrons.	are stronger than single or double bonds ar	nd share three pairs of
esson 2: Forming Solids		

A. Metals

_____ make up about two-thirds of the elements and have many useful 1. ______properties.

Name	Date	Class
Chapter Outline CONT	INUED	
a. Metals are good are free to move.	of heat and electr	icity because their electrons
b. Metals have a boiling point.	melting point and a	
crolled into sheets.	is the ability of a material, such as	metal, to be hammered or
d	is the ability of a substance to be p	ulled into wires.
2	_ of metal in solids pack together as cl	osely as possible in a regular,
3. A(n) pooled electrons.	is a bond formed when many n	netal atoms share their
4. Metal atoms combine in reg to move from atom to atom	gular patterns in which some	are free
5. In a metal, individual atom	s lose electrons to become positive	
B. Crystals		
1. Crystals are regular, repeati	ng arrangements of	,
	_, or	
2. Crystals can be held togethe	er by metallic,	, or
	_bonds.	
3. A(n) ions, or molecules are arran	is the smallest repeating pattern nged in a crystal.	n that shows how the atoms,
4. One common crystal is tabl	e salt, also known as	
a. Sodium chloride (NaCl) i	is a(n) cr	ystal.
b. Ionic crystals are	, unlike solid me	tals.
C . What is a polymer?		
1linked together in a chain.	_ are covalent compounds made up of	many small, repeating units
2. A(n)	is a small molecule that forms a	a link in a polymer chain.
3	_ is a synthetic polymer used for groce	ery bags and food wrap.

Chapter **Outline** CONTINUED

- 4. Organic polymers are polymers that contain the element ______ and are involved with life.
 - a. The monomer of a protein is a(n) ______, which includes carbon, nitrogen, and oxygen atoms.
 - **b**. ______ are organic polymers whose monomer is a sugar molecule called a monosaccharide.