CHAPTER RESOURCES

Chapter 7 The Periodic Table and Physical Properties

Includes:

LEVELED ASSESSMENT

Chapter Review Chapter Tests Test A (Below Level) BL Test B (On Level) OL Test C (Advanced Learner) AL

LABS

For leveled labs, use the LabManager CD-ROM. Lab worksheets from Student Edition Labs MiniLab Lab: Version A (Below Level) BL Lab: Version B (On Level) OL (Advanced Learner) AL

UNIVERSAL ACCESS/LEVELED RESOURCES

Target Your Reading

Chapter Content Mastery English (Below Level) **BL**

Chapter Content Mastery Spanish (Below Level)

Reinforcement (On Level) OL

Enrichment (Advanced Learner) AL

READING SUPPORT

Content Vocabulary Chapter Outline

TEACHER SUPPORT AND PLANNING

Chapter Outline for Teaching Teacher Guide and Answers

Photo Credits

Cover: Roger Ressmeyer/CORBIS

The **McGraw·Hill** Companies

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Permission is granted to reproduce the material contained herein on the condition that such material be reproduced only for classroom use; be provided to students, teachers, and families without charge; and be used solely in conjunction with the *Glencoe Science* program. Any other reproduction, for use or sale, is prohibited without prior written permission of the publisher.

Send all inquiries to: Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240-4027

ISBN-13: 978-0-07-875463-0 ISBN-10: 0-07-875463-1

Printed in the United States of America.

 $2\;3\;4\;5\;6\;7\;8\;9\;10\;\;009\;\;11\;10\;09\;08\;07\;06$

Table of Contents

To the Teacheriv
Reproducible Student Pages
Hands-On ActivitiesMiniLab: Can you guess the element?2MiniLab: Which parachute will drop first?3Lab Version A: Investigating Physical Changes4Lab Version B: Investigating Physical Changes7
Meeting Individual Needs Below, On, Advanced
Target Your Reading.10Chapter Content Mastery11Spanish Chapter Content Mastery14Reinforcement17Enrichment.20Content Vocabulary23Chapter Outline Worksheets.36
AssessmentChapter Review25Chapter Test A27Chapter Test B30Chapter Test C33
Teacher Support and Planning Chapter Outline for Teaching. T2 Teacher Guide and Answers T6

Teacher Approval Initials
Date of Approval

Student Lab/Activity Safety Form

Student Name: _____

Date: _____

Lab/Activity Title: _____

In order to show your teacher that you understand the safety concerns of this lab/activity, the following questions must be answered after the teacher explains the information to you. You must have your teacher initial this form before you can proceed with the activity/lab.

1. How would you describe what you will be doing during this lab/activity?

hat are the safety concerns associated with this lab/activity (as explained by your teacher)?
-

MiniLab Can you guess the element?

Date

Elements are organized in the periodic table according to their atomic numbers. An element can be a solid, a liquid, or a gas; a metal, a semimetal, or a nonmetal. How well do you think you know some of the elements?

Procedure

- **1**. Organize the **element cards** from the Launch Lab into groups. Identify some of the physical properties of the groups.
- **2**. Group some of the metals according to a specific property, such as luster or malleability.
- **3.** Choose other groupings that you will remember easily. Group these with the properties that are most important.
- **4.** Identify other elements with additional physical or chemical properties.

- **5**. Your teacher will hold up an element card without showing its face and give one clue to the identity of the element.
- 6. Someone might say, "I can guess that element with just five clues!" Someone else might challenge and say, "I can guess that element with only four clues."
- **7.** Your teacher will give the number of clues that ended the challenge. The student who won the challenge will name the element.

Analysis

- **1. Identify** which properties you found easiest to become familiar with when you were organizing your notes.
- 2. Give an example of groups you found difficult to learn about.
- **3**. Explain how the challenge helped you understand the organization of the periodic table.

MiniLab Which parachute will drop first?

One physical property of metals is that they conduct heat. The ability of a material to transfer heat is thermal conductivity. Some metals conduct heat faster than others do. Which metals do you think conduct heat more rapidly than other metals?

Procedure ∞ 🐨 🔎 🕲 🜆

- 1. Read and complete a lab safety form.
- 2. Choose three foil cupcake forms and three toy people.
- **3.** Use **three short pieces of thread** to attach a person to a foil form so the form becomes a parachute.
- **4.** Choose **three rods** about 10 cm long, each made of a different metal.
- **5.** Light a **candle** and carefully allow wax to drip on the center of the outside of a cupcake form. While the wax is melted, attach a rod horizontally to the parachute. Allow the wax to harden.

- 6. Repeat step 5 for the other two rods.
- **7.** Loosely secure the **ring** on a **ring stand** to be positioned later.
- 8. Place the ends of the three rods as close together as possible on the ring. Use **metal clamps** to keep them secure.
- **9**. Place a candle in a **holder** under the ring. Secure the rod ends and ring directly above the candle.
- **10.** Light the candle and observe.

Analysis

1. Identify the parachute that dropped first.

2. Explain what property of metals caused the parachutes to drop at different times.

3. Hypothesize the results if three different metals had been used in this experiment.

Lak

Investigating Physical Changes

Problem Matter makes up all the substances you find in your world. Matter can go through changes in size, shape or color, or even changes of state, but it still is the same matter. Matter accomplishes tasks, such as moving heat or electricity or cooling your drinks, but it still is the same matter. It is made up of the same matter. It is made up of the same atoms and has the same properties.

The changes in matter mentioned above are physical changes. How can you show that physical changes do not actually change matter?

Form a Hypothesis Think about the elements you organized into a periodic table in the Launch Lab. If you change these elements in some way, or use them, can you show that they are still the same matter? Write a hypothesis for an experiment that explains why the composition of matter remains the same even though it undergoes a physical change.

Materials

substances that are made up of some of the elements used in the Launch Lab or other elements or compounds:

carbon iron fillings sand copper penny copper wire salt ice cube balloon a mineral sample milk

Safety Precautions 🗫 🍟 🖉 💩 🛞 🗺

Procedure

Directions: Check the boxes below as you complete each step of the procedure.

- \Box **1**. Read and complete a lab safety form.
- □ **2.** Choose five items or substances that can be put through a physical change.

Hint: *Think about changes in texture, shape, size, color, odor, volume, mass, weight, and density.*

- □ **3**. Make a table that lists the substances and at least one element in the substance, or fill in the table on the next page.
- □ Make a physical change to each substance and observe.
- □ **4.** In your data table, record the physical change.
 - □ Give a brief explanation of how the substance can be changed back.

Lab: Version A CONTINUED

Data Table

Substance	Element in Substance	Physical Change to Substance	How to Change Substance Back

Analyze and Conclude

1. Explain why you chose certain substances for your investigation.

2. Explain why you chose the physical changes you made.

3. Evaluate how difficult it was to recover the original substance following some physical changes.

4. Apply Are there some physical changes that would be very difficult to reverse? Explain.

5. Infer You may have seen tanks marked "Liquid Nitrogen." Has the gas form of nitrogen undergone a physical change? Does the nitrogen in the tank have the same properties as the nitrogen in the air you breathe?

Lab: Version A CONTINUED

6. Draw Conclusions Matter can go through changes that make it look different and feel different, but it is still the same matter. Why is this so? Give some examples.

Error Analysis

Did you make any changes in which the original substance could not be observed or returned to its original state? For example, did you cook an egg or bake a cupcake? Check to be certain all the changes you made were physical. How can you be sure?

Communicate

Write a Paragraph Explain how you can determine that a change in matter is a physical change. Use your observations in this experiment to provide examples.

Lab

Investigating Physical Changes

CHAPTER 7 LESSON B

Problem Matter makes up all the substances you find in your world. Matter can go through changes in size, shape or color, or even changes of state, but it still is the same matter. Matter accomplishes tasks, such as moving heat or electricity or cooling your drinks, but it still is the same matter. It is made up of the same matter. It is made up of the same atoms and has the same properties.

The changes in matter mentioned above are physical changes. How can you show that physical changes do not actually change matter?

Form a Hypothesis Think about the elements you organized into a periodic table in the Launch Lab. If you change these elements in some way, or use them, can you show that they are still the same matter? Write a hypothesis for an experiment that explains why the composition of matter remains the same even though it undergoes a physical change.

Materials

substances that are made up of some of the elements used in the Launch Lab or other elements or compounds:

carbon iron filings sand copper penny copper wire salt ice cube balloon a mineral sample milk

Safety Precautions 📼 🍟 🖉 💩 🛞 🗺

Procedure

Directions: Check the boxes below as you complete each step of the procedure.

- \Box 1. Read and complete a lab safety form.
- □ **2.** Choose five items or substances that can be put through a physical change.
- □ 3. Make a table that lists the substances and at least one element in the substance or fill in the table on the next page. Make a physical change to each substance and observe.
- □ **4.** In your data table, record the physical change. Give a brief explanation of how the substance can be changed back.

Lab: Version B CONTINUED

Data Table

Substance	Element in Substance	Physical Change to Substance	How to Change Substance Back

Analyze and Conclude

1. Explain why you chose certain substances for your investigation.

2. Explain why you chose the physical changes you made.

3. Evaluate how difficult it was to recover the original substance following some physical changes.

4. Apply Are there some physical changes that would be very difficult to reverse? Explain.

5. Infer You may have seen tanks marked "Liquid Nitrogen." Has the gas form of nitrogen undergone a physical change? Does the nitrogen in the tank have the same properties as the nitrogen in the air you breathe?

Lab: Version B CONTINUED

6. Draw Conclusions Matter can go through changes that make it look different and feel different, but it is still the same matter. Why is this so? Give some examples.

Error Analysis

Did you make any changes in which the original substance could not be observed or returned to its original state? For example, did you cook an egg or bake a cupcake? Check to be certain all the changes you made were physical. How can you be sure?

Going Further

Challenge

7. Develop a list of questions that could be used to help classify a change as a physical change.

8. A teacher mixes salt into a glass of water. One student says this is a physical change because it can be reversed. Another student disagrees. Suggest how the first student could reverse the change and prove his assertion.

9. Tyler wanted to illustrate all the physical changes he could make to paper. He did the following: painted the paper, cut the paper, placed the paper in water, burned the paper, shredded the paper, and folded the paper. His teacher said that not all of these were physical changes. Classify each of the changes as physical or not physical.

Extension

Plan the preparation and cooking of a meal at home. Identify all of the physical changes and chemical changes that occur during food preparation.

Communicate

Write a Paragraph Explain how you can determine that a change in matter is a physical change. Use your observations in this experiment to provide examples.

Target Your **Reading**

The Periodic Table and Physical Properties

Use this to focus on the main ideas as you read the chapter.

- **1. Before you read** the chapter, respond to the statements below on your worksheet or on a numbered sheet of paper.
 - Write an **A** if you **agree** with the statement.
 - Write a **D** if you **disagree** with the statement.
- **2. After you read** the chapter, look back to this page to see if you've changed your mind about any of the statements.
 - If any of your answers changed, explain why.
 - Change any false statements into true statements.
 - Use your revised statements as a study guide.

Before You Read A or D	Statement	After You Read A or D
	1. The elements are arranged on the periodic table according to their atomic numbers and mass numbers.	
	2 . The elements in a group have similar properties.	
	3 . Metals are located on the right side of the periodic table.	
	4. Not all isotopes are radioactive.	
	5. Radioactive elements have unstable nuclei.	
	6. An element's mass number is the number of neutrons in its nucleus.	
	7. <i>Transmutation</i> is another word for <i>half-life</i> .	
	8. Melting and boiling points change with pressure.	
	9. Thermal conductivity occurs because particles collide with one another.	
	10. Density is a physical property that depends on the size of a sample.	

Chapter Content Mastery Organization of the Periodic Table										le I	Chapt Lessoi	ER 7 N 1							
Di	Directions: Use the illustration of the periodic table to complete the tasks below.																		
/	Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements in the same group have similar chemical properties. Columns of elements are called groups. Elements are called groups. Columns of elements are									3									
1 Hy	drogen 1 H .008 thium	2 Beryllium	E Atomic I Atom	Element – number – Symbol – ic mass –	Hydro	ogen I 08	State of matter The first th of matter of temperatur	ree symbols to f the element e. The fourth	Synthetic ell you the star at room symbol identif	te The co tells yo metal,	lor of an elem nou if the elem nonmetal, or	nent's block ient is a r metalloid.	Boron	Carbon	15 Nitrogen	Oxygen 8	5 17 Fluorine	Helium 2 He 4.003 Neon 10	
2 6	Li 🗍	Be 9.012					elements the significant	at are not pr amounts on E	esent in arth. Useful				B 10.811	C	N 14.007	0 15.999	F 18.998	Ne 20.180	
3 2	odium 11 Na 2.990	Magnesium 12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	Aluminum 13 Al 26.982	Silicon 14 Si 28.086	Phosphorus 15 P 30.974	Sulfur 16 S 32.065	Chlorine 17 Cl 35.453	Argon 18 Ar 39.948	
4 3!	assium 19 K 9.098	Calcium 20 Ca 40.078	Scandium 21 Sc 44.956	Titanium 22 Ti 47.867	Vanadium 23 V 50.942	Chromium 24 Cr 51.996	Manganese 25 Mn 54.938	Iron 26 Fe 55.845	Cobalt 27 Co 58.933	Nickel 28 Ni 58.693	Copper 29 Cu 63.546	Zinc 30 Zn 65.409	Gallium 31 Ga 69.723	Germanium 32 Ge 72.64	Arsenic 33 As 74.922	Selenium 34 Se 78.96	Bromine 35 Br 79.904	Krypton 36 Kr 83.798	
Rul 5 8!	bidium ³⁷ Rb 5.468	Strontium 38 Sr 87.62	Yttrium 39 Y 88.906	Zirconium 40 Zr 91.224	Niobium 41 Nb 92.906	Molybdenum 42 Mo 95.94	Technetium 43 ⓒ Tc (98)	Ruthenium 44 Ru 101.07	Rhodium 45 Rh 102.906	Palladium 46 Pd 106.42	Silver 47 Ag 107.868	Cadmium 48 Cd 112.411	Indium 49 In 114.818	Tin 50 Sn 118.710	Antimony 51 Sb 121.760	Tellurium 52 Te 127.60	Iodine 53 I 126.904	Xenon 54 V Xe 131.293	
6	esium 55 Cs 2.905	Barium 56 🗍 Ba 137.327	Lanthanum 57	Hafnium 72 1 Hf 178.49	Tantalum 73 Ta 180.948	Tungsten 74 🗍 W 183.84	Rhenium 75 Re 186.207	Osmium 76 Os 190.23	Iridium 77 🗍 Ir 192.217	Platinum 78 1 Pt 195.078	Gold 79 Au 196.967	Mercury 80 Hg 200.59	Thallium 81 TI 204.383	Lead 82 Pb 207.2	Bismuth 83 Bi 208.980	Polonium 84 Po (209)	Astatine 85 At (210)	Radon 86 Rn (222)	
7 Fra	ncium 87 Fr 223)	Radium 88 Ra (226)	Actinium 89 Ac (227)	Rutherfordium 104 ⓒ Rf (261)	Dubnium 105 () Db (262)	Seaborgium 106 Sg (266)	Bohrium 107 Bh (264)	Hassium 108 () Hs (277)	Meitnerium 109 () Mt (268)	Darmstadtium 110 Ds (281)	Unununium * 111 Uuu (272)	Ununbium * 112 Uub (285)		Ununquadium * 114 Uuq (289)		**116		**118	
Row	s of elem	ents are caller	d	The numb	er in parentheses	is the mass num	ber of the longe	t-lived isotope f	or that element.	* The names a ** Elements	nd symbols for 116 and 118 we	elements 111–11 re thought to ha	4 are temporary. ve been created.	Final names will The claim was re	be selected whe tracted because t	n the elements' of the experimental	discoveries are ve l results could not	rified. be repeated.	v
perio incre	arrow sho	ic number iss a period.	Lant	hanide series	Cerium 58 Ce 140.116	Praseodymium 59 Pr 140.908	Neodymium 60 Nd 144.24	Promethium 61 () Pm (145)	Samarium 62 Sm 150.36	Europium 63 🗇 Eu 151.964	Gadolinium 64 Gd 157.25	Terbium 65 Tb 158.925	Dysprosium 66 Dy 162.500	Holmium 67 Ho 164.930	Erbium 68 Er 167.259	Thulium 69 Tm 168.934	Ytterbium 70 Yb 173.04	Lutetium 71 Lu 174.967	
elem perio to th save	ents wou odic table e bottom space.	Id fit into the . They are mo 1 of the table 1	ved to Ad	ctinide series	Thorium 90 Th 232.038	Protactinium 91 Pa 231.036	Uranium 92 U 238.029	Neptunium 93 (o) Np (237)	Plutonium 94 () Pu (244)	Americium 95 () Am (243)	Curium 96 () Cm (247)	Berkelium 97 () Bk (247)	Californium 98 () Cf (251)	Einsteinium 99 () Es (252)	Fermium 100 () Fm (257)	Mendelevium 101 Md (258)	Nobelium 102 () No (259)	Lawrencium 103 Lr (262)	

1. Circle the noble gases family of elements. It contains helium. What is the group number?

- **2.** Draw an *X* through the element with the lowest atomic number. Name the element. What is the atomic number?
- **3**. Draw a box around the period that contains radioactive elements. This period includes uranium. What is the special name for elements in this period?
- **4**. Underline all of the elements in the oxygen group.
- **5.** Draw a line through the symbols of all elements in Period 3. List them on a seperate sheet of paper.

Name	Date	Class
Chapter Content	Isotones and Radioactivity	CHAPTER 7
Mastery V	150topes and Radioactivity	LESSON Z

Directions: Write the term that matches each description below in the spaces provided. The letters in the darker boxes will spell the answer to question 9.

- 1. the time it takes for a radioactive isotope to decay to half its original mass
- 2. a radioactive element made by scientists or created during nuclear reactions
- 3. occurs when an unstable atomic nucleus changes into other nuclei by emitting particles and energy
- 4. an atom of one element is changed into an atom of another element
- 5. a term to describe a nucleus that is unstable and undergoes radioactive decay
- 6. a giant machine that is capable of making particles move very fast
- 7. an element that has only radioactive isotopes
- 8. An alpha particle is made up of two neutrons and two _____
- 9. Atoms of the same element that have different numbers of neutrons are

called

Mastery

Directions: Calculate the number of protons and neutrons in each isotope listed below.

10 . carbon-12:	protons,	neutrons
11 . carbon-14:	protons,	neutrons
12 . uranium-235:	protons.	neutrons

Chapter Content Mastery Physical Properties and Changes LESSON 3

Directions: *Match the terms in Column II with the definitions in Column I. Write the letter of the correct term in the blank at the left.*

Column I	Column II		
1 . a characteristic of a substance	A.mass		
2. a physical property that shows how strongly	B . melting point		
the particles of a substance are held together	C. hardness		
3 . measurement of how much matter an object contains	D .property		
 4 . solid, liquid, gas	E. states of matter		
5. temperature at which a solid becomes a liquid			

Directions: For each of the objects, list as many physical properties as possible.

6. brick

7. banana

8.	pencil
9.	horseshoe magnet
10.	sheet of paper
11.	can of soda
12.	your science book

13. your index finger

Fecha

Dominio del contenido

La organización de la tabla periódica

Instrucciones: Usa la ilustración de la tabla periódica para completar la siguiente tarea.

- 1. Circula la familia de elementos de los gases nobles. Contiene el helio. ;Cuál es el número del grupo?
- 2. Traza una X en el elemento con el número atómico más bajo. Nombra el elemento. ;Cuál es el número atómico?
- 3. Pon en una casilla el periodo que contiene los elementos radioactivos. Este periodo incluye el uranio. ;Cuál es el nombre especial para los elementos en este periodo?

4. Subraya todos los elementos en el grupo de oxígeno.

5. Traza una línea en los símbolos de todos los elementos en el periodo 3. Escribe sus nombres.

Nombre		Fecha	Cla	ase					
Dominio del contenido Los isótopos y la radioactividad CAPÍTULO 7 Lección 2									
Instrucciones: Escribe el término en los espacios que coincide con cada descripción. Las letras en las cajas más oscuras forman la palabra que contesta la pregunta 9.									
	1.								
2.									
3.									
4.									
	5.								
6.									
7.									
8.									
 el tiempo que se toma para que un isótopo radioactivo se desintegre a la mitad de su masa original los elementos radioactivos que están hechos por los científicos o creados durante las reacciones nucleares 									
3. ocurre cuando un núcleo atómico inestable se cambia a otros núcleos emitiendo partículas y									

- energía 4. un átomo de un elemento se cambia a un átomo de otro elemento
- 5. un término para describir un núcleo que es inestable y sufre desintegración radioactiva
- 6. una maquina muy grande que es capaz de hacer que las partículas se muevan muy rápidamente
- 7. un elemento que tiene solamente isótopos radioactivos
- 8. Una partícula alfa está hecha de dos neutrones y dos _____
- 9. Los átomos del mismo elemento que tienen diferentes números de neutrones se
 - llaman_____.

Instrucciones: Calcula el número de protones y de neutrones en cada isótopo en la lista de abajo.

10 . carbono-12:	protones,	neutrones	
11. carbono-14:	protones,	_neutrones	
12 . uranio -235:	_protones,	_ neutrones	

Dominio del

contenido

Las propiedades físicas y los cambios

CAPÍTULO 7 LECCIÓN 3

Instrucciones: *Coincide los términos en la Columna I con las definiciones en la Columna II. Escribe la letra del término correcto al lado izquierdo.*

	Columna I	Columna II
	1 . una característica de una sustancia	A. masa
	2. una propiedad física que muestra que tan fuertemente las	B. punto de fusión
particulas de una sustancia estan unidas	particulas de una sustancia estan unidas	C . dureza
	3. una medida de la cantidad de materia que un objeto contiene	D . propiedad
	4 . sólido, líquido, gas	E. estados de materia
	5 . la temperatura en la cual un sólido se convierte en un gas	

Instrucciones: *Para cada uno de los objetos, haz una lista de tantas propiedades físicas como sea posible.*

6. ladrillo

7. plátano

8. lápiz

9. imán de herradura

10. hoja de papel

11. lata de soda

12. tu libro de ciencias

13. tu dedo índice

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc

Reinforcement

CHAPTER	7
LESSON 1	

Directions: *Label the following element's key using the terms listed below.*

Organization of

the Periodic Table

Directions: Use the data on the left to complete the two element keys below.

5. element name: aluminum element symbol: Al atomic number: 13 atomic mass: 26.982
6. element name: gold element symbol: Au atomic number: 79 atomic mass: 196.967

Directions: *In the blank at the left, write* true *if the statement is true. If the statement is false, change the word in italics to make it true.*

7	Some of the most chemically reactive elements are the metals located in <i>Groups 3-12</i> .
8	. Nonmetals are good conductors of heat and electricity.
9	The elements in the periodic table are organized by their atomic <i>number</i> .
1	0 . There are seven <i>groups</i> , or rows, in the periodic table.

Name	Date	Class
		CHAPTER 7

Reinforcement \ Isotopes and Radioactivity

Directions: Write the word or phrase that correctly completes each statement in the space provided.

- 1. ______ occurs when an atom of one element is changed into an atom of another element.
- The process that occurs when an unstable atomic nucleus changes into another nucleus by emitting one or more particles and energy is called ______.
- **3.** An alpha particle is made up of two ______ and
 - two _____.
- **4**. A(n) ______ is a giant machine that is capable of making particles move fast.
- 5. A nucleus that is unstable and undergoes radioactive decay is
 - called _____.
- 6. Atoms of the same ______ that have different numbers of neutrons are called isotopes.
- 7. ______ are radioactive elements made by scientists or created during nuclear reactions.

8. An element that has only radioactive isotopes is said to be a(n) ______.

- 9. An isotope's ______ is the time it takes it to decay to half its original mass.
- 10. An electron that is ejected from a radioactive nucleus is called

a(n) _____.

Directions: *Given the information below, calculate how long it would take before only 1 g of each isotope remains. Show your calculations, and circle your answer.*

11. uranium-235; half-life = 713 million years, starting mass = 4 g

12. carbon-16; half-life = 0.747 s; starting mass = 32 g

13. carbon-14; half-life = 5,730 years, starting mass = 16 g

Name	Date	Class

Reinforcement Physical Properties and Changes LESSON 3

Directions: *Explain how the two terms in each question are related.*

1. mixing, melting
2. color, size
3. density, melting point
4. rusting, transmutation
5. boiling point, melting point
6. isotope, number of electrons
7. mixture, solution
8. thermal conductor, electrical conductor

Directions: *Circle the term that correctly completes each sentence.*

- **9.** (Thermal/Electrical) conductivity is the ability of a material to transfer electric charge through a material.
- **10.** (Hardness/Density) is a physical property that shows how strongly the particles of a substance are held together.
- **11.** The temperature at which a solid changes to a liquid is its (melting/boiling) point.
- **12.** The higher the air pressure around a substance, the (lower/higher) its boiling point.
- **13.** A (chemical/physical) property is any characteristic of a material that can be observed without changing the identity of the material itself.
- **14.** Density is a physical property of a substance that is equal to the (volume/mass) per unit (volume/mass) of the substance.
- 15. (Nonmetals/Metals) have high thermal and electrical conductivities.

Name	Date	Class
		CHAPTER 7
<i>Enrichment</i> \ Tiny Matter		LESSON 1

The modern periodic table is based on the work of Dmitri Mendeleev, a nineteenth-century Russian chemist and professor. In the 1860s, while writing a chemistry textbook, he came up with a way to organize the elements by their atomic weights. He arranged the elements into groups with similar properties. What you see below is the table he had developed by 1871.

Notice the spots that Mendeleev left blank in the table below (marked with a dash). According to his system, any spot on the table could only be filled by an element with a particular atomic weight and specific properties. None of the elements known at the time had the appropriate properties to fit the blank spots. Therefore, Mendeleev inferred that some elements existed but had not yet been discovered.

I	II	III	IV	V	VI	VII	VIII
Н							
Li	Be	В	С	Ν	0	F	
Na	Mg	Al	Si	Р	S	Cl	
K	Ca	-	Ti	V	Cr	Mn	Fe, Co, Ni
Cu	Zn	-	-	As	Se	Br	Ru, Rh, Pd
Ag	Cd	In	Sn	Sb	Te	Ι	
Cs	Ba						

Directions: *Respond to each statement below in the space provided.*

1. Contrast this table and the modern periodic table.

2. **Describe** your theory about why some elements are missing from the table.

3. Mendeleev predicted that one of the blanks in his table would someday be filled by an element similar to silicon (Si). **Deduce** which spot this was and explain your reasoning.

Enrichment \ The Actinide Group

The actinide group is a series of radioactive elements. There are 15 elements in the actinide group, but only three of them are found in any appreciable amount in nature: thorium, protactinium, and uranium. All of the elements that have been artificially produced are referred to as the transuranium elements. It is easy to remember the transuranium elements as the ones that have an atomic mass greater than or equal to 93. Many of the transuranium elements have been named in honor of important scientists or important scientific institutions.

Directions: Research each of the transuranium elements listed below. Determine how they are formed, when they were discovered, and, if applicable, their melting points, their boiling points, if and how many isotopes exist, any important uses for them, and for whom or what they were named.

1. americium

2. curium

3. berkelium

4. einsteinium

Carbon is one of the most common elements in the world. It forms the tissue of every living thing, from an elephant to a spinach leaf. It makes up the products we use to fuel our cars and heat our homes. In one form, it is so soft that it easily rubs off on paper. In another form, it is the hardest natural material known. For years, scientists have explored how the same element can make such different substances.

Carbon Bonding

One answer is that each carbon atom has four electrons in its outer shell (or orbit).

Because the outer shells of most atoms can hold eight electrons, carbon atoms easily form bonds with many other atoms—including other carbon atoms. However, carbon atoms can bond in several different ways. The drawings below show three different forms of carbon. The circles represent atoms and the lines represent chemical bonds holding the atoms together.

Which properties do you think go with each form of carbon?

Directions: On the line to the left of each form's name, write the letter of its sketch. Then on the lines after each form's name, write the letters of the descriptive phrases from the list below that fit each form. Each descriptive phrase will be used only once.

1. _____ Diamond-_____, _____,

2._____, ____, ____,

a. the hardest natural structure

- b. a recently discovered type of carbon, also known as "buckeyballs"
- c. a soft type of carbon that rubs off easily on paper

d. clear crystal

- **e**. used in pencil lead
- f. can also form hollow tubes with the same carbon structure
- g. scientists use it as a "cage" to hold other atoms
- h. used to cut glass and steel
- i. added to lubricants

Content Vocabul	ary The Period and Physic	dic Table cal Properties	CHAPTER 7
Directions: <i>Print</i> T <i>that correctly mat</i>	C or F on the line in front of eachers the definition on the blan	ach definition. If the definition nk line after the statement.	on is false, write the word
boiling point	conductivity	density	electrical conductivity
group	half-life	halogens	melting point
metallic	mixing	particle accelerator	period
physical change	synthetic elements	transmutation	
1. A(1	n) physical property is a ch	aracteristic of a material th	at can be observed
wit	hout changing the identity	of the material.	
2. A v	rertical column of elements	on the periodic table is cal	led a series.
3. Rad	dioactive elements have on	ly radioactive isotopes	
4. Th	ermal conductivity is the a	bility of a material to trans	fer heat by collisions
bet	ween its particles.		
5. Th	e time it takes for a sample	of a radioactive isotope to o	decay to half of its
ori	ginal mass is known as its f	requency.	
6. Th	e temperature at which a lic	quid changes state to becon	ne a gas is the substance's
me	lting point		
7. Tra	nsformation is a process in	which an atom of one eleme	ent is changed into an
ato	m of another element.		
8. The	e ability of a material to tran	nsfer electricity or thermal en	nergy is conductivity.
9. Rad	dioactive decay occurs when	n an unstable atomic nucleu	s changes into another

nucleus by emitting one or more particles and energy.

- **10.** A(n) **chemical change** is any change in size, shape, or state of matter in which the substance's identity is unchanged.
- **11.** The very stable elements in Group 18 of the periodic table are called **noble gases.**

_____12. Common metals have the property of being ductile. ______

13. A machine capable of making particles move very fast is a **cathode ray gun**.

14. Thermal conductivity is the ability of a material to transfer electric charge through a material.

15. The temperature at which a solid changes state to become a liquid is its **freezing** point.

_____16. Luster is shine displayed by most metals. _____

17. A horizontal row of elements in the periodic table is called a **group**.

Chapter **Review** The Periodic Table and Physical Properties

Part A. Vocabulary Review

Directions: *In the space provided, write the letter of the item in Column II that matches the description in Column I.*

Column I	Column II
1. any change in size, shape, or state of matter in which the substance's identity is unchanged	A. boiling point
2 . occurs when an unstable atomic nucleus	B. conductivity
or more particles and energy	C. group
3. the temperature at which a liquid changes state	D . half-life
to become a gas	E. luster
4. a word which describes the collective properties of common metals	F . melting point
5. the ability of a material to transfer electricity	G . metallic
or thermal energy	H. noble gases
6. the shine displayed by most metals	I. period
7. radioactive elements made by scientists or created during nuclear reactions	J. physical change
8. very stable elements that are in Group 18 of	K. radioactive decay
the periodic table	L. synthetic element
9. the temperature at which a solid changes state to become a liquid	M. thermal conductivity
10. the ability of a material to transfer heat by collisions between its particles	N . transmutation
11. the time it takes for a sample of a radioactive isotope to decay to half of its original mass	
12. a horizontal row of elements in the periodic table	
13. a process in which an atom of one element is changed into an atom of another element	
14. a vertical column of elements on the periodic table	

Chapter **Review** CONTINUED

Part B. Concept Review

Directions: Choose the element that fits each of the descriptions written below. In the blank to the left of the description, write the name of the element.

- **2.** atomic nucleus has the fewest protons
 - **3.** does not occur naturally on Earth
- _____ **4**. has an average atomic mass of about 12
 - 5. atomic nucleus contains 11 protons

Directions: *Circle the term in parentheses that correctly completes each sentence.*

- 6. The symbol for the element mercury is (Mg/Hg/Ga).
- 7. The element (neon/sodium/bromine) is a gas at room temperature.
- 8. Most of the (actinides/alkali metals/halogens) are synthetic elements.
- 9. (Sulfur/Magnesium/Copper) is a good conductor of electricity and heat.
- **10.** (Aluminum/Iron/Copper) has magnetic properties.
- **11.** Silicon is an example of a(n) (semiconductor/transition element/alloy).
- 12. (Alpha/Beta/Gamma) particles consist of two protons and two neutrons.
- **13.** Most nonmetals are (good conductors/brittle/gases).
- 14. Elements that can be pounded into thin sheets are (metalloids/ductile/malleable).
- **15.** The (boiling point/melting point/freezing point) is the temperature at which a substance changes from a solid to a liquid.
- **16.** All of the (transition elements/lanthanides/actinides) are radioactive elements.

Date ____

Chapter

Outline

The Periodic Table and Physical Properties

Lesson 1: Organization of the Periodic Table A. How are the elements arranged? 1. Each element is arranged in the periodic table according to its ______. 2. There are seven horizontal rows of elements, called _____ 3. There are 18 vertical columns of elements on the periodic table, called . 4. Each member of a group in the periodic table tends to have ______ and _____ properties similar to those of the other members of the group. **B**. What are the regions of the periodic table? 1. There are ______ regions on the periodic table within which elements are clustered that share some chemical and physical properties. 2. The elements that are ______ are on the left side and in the middle of the periodic table. _____ properties are the collective properties of common metals. If а. an element has these properties, it is classified as a metal. **b**. The shine of a metal such as gold, silver, or stainless steel is called . c. Metals can be shaped into sheets or pulled into wires, meaning that metals are both _____ and _____. **d**. The ability of a material to transfer electricity or thermal energy (heat) is called ______. Metals are good conductors of both heat and electricity. e. The most reactive metals, found in Groups ______ and _____ of the periodic table, combine with other materials easily and are never found in nature by themselves. 3. Nonmetals are found on the ______ of the periodic table and have properties that are the opposite of metals.

Chapter Outline of	ONTINUED
a. Nonmetals do not ha conductors of heat or	ve luster, cannot be easily shaped, and are electricity.
b	, a nonmetal, is important in the compounds that make up the
c. Most of the	found in living things are nonmetals.
d . The most reactive nor the periodic table and	nmetals, called, are found in Group 17 on l do not exist in nature by themselves.
e. Halogens react with _ which are brittle, crys	from Groups 1 and 2 to form ionic salts, stalline substances with high melting points.
4. The	, or metalloids, are located between the metals and dic table in a stair-like pattern starting with boron and moving down
a. Semimetals have prop	perties of both
and	
b. A(n)	is an element, like silicon, that does not conduct
electricity as well as a	(n) but does conduct electricity better
than a(n)	·
5. Elements in Group 18 o They are extremely stab	n the periodic table are known as the le and exist in nature only as single atoms.
C. Are there other periodic ta	ıbles?
1. Depending on the infor	mation they need to get from a periodic table, different scientists use
	periodic tables.
Lesson 2: Isotopes and Ra	dioactivity
A. Isotopes—Different Numl	pers of Neutrons
1. A(n)	is one of two or more atoms of an element with the same a different number of neutrons, in their nuclei.
2. The number of neutron	s in an isotope is equal to the mass number of the isotope (total

number of neutrons and protons) minus the ______ (number of protons).

Chapter Outline CONTINUED

- **3.** Because they have the same number of ______ in their outer energy levels, different isotopes form compounds with nearly identical chemical properties.
- **B.** What is radioactive decay?
 - 1. Many atomic nuclei are stable when they have the same number of ______
 - and ______ and are unstable when they have more neutrons than protons.
 - 2. ____ _____, or radioactivity, occurs when an unstable atomic nucleus changes into another nucleus by emitting one or more particles and energy.
 - **3.** A nucleus that is unstable and undergoes radioactive decay is

called _____.

4. An alpha particle has _____ protons

and neutrons. When a radioactive isotope releases an alpha

- particle, its ______ changes and it becomes a different element.
- 5. An electron released from the nucleus of an atom is called a(n) particle.
- 6. ______ occurs when an atom of one element is changed into an atom of another element.
- 7. Elements with no stable isotopes are called ______.
- 8. Nuclei with large numbers of protons and neutrons tend to be ______.
- 9. The ______ of a radioactive isotope is the time it takes for a sample of that isotope to decay to half of its original mass.

C. How are elements discovered and named?

_____ are radioactive elements that are made by scientists in 1. laboratories or created during nuclear reactions.

2. Synthetic elements are created in laboratories by artificial ______.

3. Artificial transmutation is done by causing _______ to collide with each other at high speeds; particles are given high speeds using a tool called

а .

38

Chapter Outline CONTINUED

4. The name of a new _______ is selected by the team of scientists that discovers it, but only after their work has been reviewed and the name has been approved by a panel of experts.

Lesson 3: Physical Properties and Changes

A. What is a physical property?

1. A(n) ______ is any characteristic of a material that can be observed without changing the identity of the material itself.

2. Some physical properties, such as _____

_____, depend on the amount of matter; other physical properties and do not depend on the amount of matter.

- **3**. The temperature at which a solid changes to a liquid is its ______. This physical property does not depend on the amount of matter.
- **4.** The temperature at which a liquid changes to a gas is its . This physical property does not depend on the amount of matter.
- **5.** Different substances have different and

_____ points.

a. Substances whose molecules have stronger attractions to each other tend to have

melting and boiling points.

- ______ the air pressure around a substance, the higher its melting **b.** The and boiling points.
- 6. Density is a physical property of a substance that ______ depend on the amount of matter.
 - a. Density is the _________ -per-unit volume of a substance.
 - **b.** A substance's density is ______ when its particles are packed more tightly together.
- 7. ______ is a physical property that shows how strongly the particles of a substance are held together.
- **8**. _______ is the ability of a material to transfer heat by collisions.
- **9**. _______ is the ability of a material to transfer electric charge.

Chapter Outline CONTINUED

- **B.** What is a physical change?
 - _____ is any change in size, shape, or state of matter in which the **1.** A(n) _ identity of the substance is unchanged.
 - _____ is a physical change in which one substance is mixed into 2. ____ another substance to form a solution.
 - _____ is a physical change that takes place when two substances are 3. ____ combined and neither substance dissolves.
 - 4. Changes in the state of matter of a substance are physical changes and

are _____